Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains
نویسندگان
چکیده
منابع مشابه
Isometric Embeddings of Riemannian Manifolds
The dot in (1) denotes the usual scalar product of R. The notion embedding means, that w is locally an immersion and globally a homeomorphism of M onto the subspace u(M) of R*. If an embedding w : M -• R satisfies (1) on the whole M, we speak of an isometric embedding. If w is an immersion and a solution of (1) in a (possibly small) neighbourhood of any point of M, we speak of a local isometric...
متن کاملRelative Isometric Embeddings of Riemannian Manifolds
We prove the existence of C1 isometric embeddings, and C∞ approximate isometric embeddings, of Riemannian manifolds into Euclidean space with prescribed values in a neighborhood of a point.
متن کاملSome isometric embedding and rigidity results for Riemannian manifolds.
In this note, we announce some new results concerning rigidity and isometric embeddings of Riemannian manifolds. A special case of the main result states that a general M(n) [unk] R(n+r), r</=(n - 1)(n - 2)/2, is uniquely determined up to finitely many constants by its induced ds(2).
متن کاملweak-reversible Markov chains
The theory of L-spectral gaps for reversible Markov chains has been studied by many authors. In this paper we consider positive recurrent general state space Markov chains with stationary transition probabilities. Replacing the assumption of reversibility by a less strong one, we still obtain a simple necessary and sufficient condition for the spectral gap property of the associated Markov oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1987
ISSN: 0022-040X
DOI: 10.4310/jdg/1214441175